skip to main content


Search for: All records

Creators/Authors contains: "Sreenivasan, Sreeprasad T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Considerable efforts are being made to find cheaper and more efficient alternatives to the currently commercially available catalysts based on precious metals for the Hydrogen Evolution Reaction (HER). In this context, fullerenes have started to gain attention due to their suitable electronic properties and relatively easy functionalization. We found that the covalent functionalization of C 60 , C 70 and Sc 3 N@ I h C 80 with diazonium salts endows the fullerene cages with ultra-active charge polarization centers, which are located near the carbon-diazonium bond and improve the efficiency towards the molecular generation of hydrogen. To support our findings, Electrochemical Impedance Spectroscopy (EIS), double layer capacitance ( C dl ) and Mott–Schottky approximation were performed. Among all the functionalized fullerenes, DPySc 3 N@ I h C 80 exhibited a very low onset potential (−0.025 V vs. RHE) value, which is due to the influence of the inner cluster on the extra improvement of the electronic density states of the catalytic sites. For the first time, the covalent assembly of fullerenes and diazonium groups was used as an electron polarization strategy to build superior molecular HER catalytic systems. 
    more » « less
  2. Abstract

    Overcoming slow kinetics and high overpotential in electrocatalytic oxygen evolution reaction (OER) requires innovative catalysts and approaches that transcend the scaling relationship between binding energies for intermediates and catalyst surfaces. Inorganic complexes provide unique, customizable geometries, which can help enhance their efficiencies. However, they are unstable and susceptible to chemical reaction under extreme pH conditions. Immobilizing complexes on substrates creates single‐molecule catalysts (SMCs) with functional similarities to single‐atom catalysts (SACs). Here, an efficient SMC, composed of dichloro(1,3‐bis(diphenylphosphino)propane) nickel [NiCl2dppp] anchored to a graphene acid (GA), is presented. This SMC surpasses ruthenium‐based OER benchmarks, exhibiting an ultra‐low onset and overpotential at 10 mAcm−2when exposed to a static magnetic field. Comprehensive experimental and theoretical analyses imply that an interfacial charge transfer from the Ni center in NiCl2dppp to GA enhances the OER activity. Spectroscopic investigations reveal an in situ geometrical transformation of the complex and the formation of a paramagnetic Ni center, which under a magnetic field, enables spin‐selective electron transfer, resulting in enhanced OER performance. The results highlight the significance of in situ geometric transformations in SMCs and underline the potential of an external magnetic field to enhance OER performance at a single‐molecule level.

     
    more » « less
  3. Abstract

    Designing electrocatalysts that excel in hydrogen and oxygen electrochemistry is crucial for sustainable hydrogen generation through electrochemical water splitting. This study presents a novel tricomponent catalyst composed of an alginate hydrogel (AL) infused with single‐walled carbon nanotubes (CNTs) and copper oxide (CuO) nanoparticles. The catalyst exhibits benchmark‐close bifunctional activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline conditions. The aerophobic nature of the AL‐gel facilitates superior bubble release from the electrode, while the inclusion of CNTs mitigates charge transfer resistance. Moreover, heterojunctions of CuO and CNTs create unique interfacial active sites, culminating in high electrocatalytic water‐splitting activity. The structural rigidity of the composite permits its use as self‐standing electrodes (SSE) without using substrates or binders, enabling a direct evaluation of its activity. The composite electrode demonstrates exceptional electrocatalytic HER activity in an alkaline solution, with onset potentials of 93 mV and moderate OER activity with an onset of 155 mV. Moreover, a water electrolysis cell featuring the bifunctional SSE exhibits an open circuit voltage of 1.85 V at 100 mA.cm−2, and only 8% efficiency loss after 100 h marking this a significant stride in developing self‐standing nonprecious electrocatalysts with impressive catalytic performance.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)